Part 3

No. 1

Content

No. 2

- > General
- > Rocket Science
 - Ideal Rocket Equation
 - Earth's Atmosphere
 - Newton's Laws
 - Kepler's Laws
- > Definition
 - Cost Engineering (Practice V)
- > Requests from Audience for Lectures

General

Goal of Today's Lecture

"You will learn about basics of rocket science and do some exercises with selected examples."

"It's time we face reality, my friends. ... We're not exactly rocket scientists.

General

Contact

No. 4

Dr.-Ing. Robert Alexander GOEHLICH
Mobile: +81-(0)90 1767 1667
Fax: +81-(0)45-566-1778
Email: mail@robert-goehlich.de
Internet: www.robert-goehlich.de

Mr. Akihiko Hara (Teaching Assistant)

Mobile: n.a.

Email: chicago@doi.ics.keio.ac.jp

Keio University
Department of System Design
Engineering
(Space System Engineering)
Office 14-609/14-620
3-14-1 Hiyoshi
Kohoku-ku
Yokohama 223-8522
JAPAN

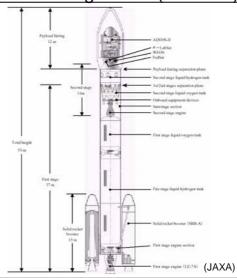
Mr. Sindharta Tanuwijaya (Webmaster)

Mobile: n.a.

Email: <u>zaraasran@yahoo.com</u>

Rocket Equation

No. 5


$$\Delta_{ ext{Fecturest}} = dM(u+v)$$
 $\Delta_{ ext{Fecturest}} = (M-dM) du$.
 $dM(u+v) = (M-dM) du \approx M du$.
 $M du + dM = 0 \quad \text{if} \quad u \ll v$
 $du = -v rac{dM}{M}$
 $\int_{v_0}^u du = -v \int_{M_0}^M rac{dM'}{M'}$,
 $= v \ln \left(rac{M_0}{M}
ight) + u_0$

where u is the final rocket velocity, v is the velocity of the exhaust gases, M_0 is the starting mass, M is the ending mass of the rocket and u_0 is the initial rocket velocity prior to the fuel burn. This equation was published by $\underline{\mathsf{Tsiolkovsky}}$ in 1903.

Rocket Equation

Launch Vehicle Configuration (HII-A F4)

Rocket Equation

(JAXA)

Launch Vehicle Characteristics (HII-A F4) No. 7

Name	H-IIA Launch Vehicle No.4 (H-IIA F4)							
Height (m)	53							
Total mass (t)	286 (without payloads)							
Inertial method	Inertial guidance system							
Each stage								
	1 st stage	Solid Rocket Booster (SRB)	2 rd stage	Payload Fairing				
Height (m)	37	15	11	12				
Outside diameter (m)	4.0	2.5	4.0	5.1				
Mass (t)	114	150 (for two)	20 1.7					
Propellant mass (t)	101	130 (for two)	17					
Thrust (KN)	1,100 *1	4,520 (for two) *1	137 ^{*1}					
Combustion time (s)	390	100	530					
Propellant type	Liquid oxygen/hydrogen	Polybutadiene composite solid propellant	Liquid oxygen/hydrogen					
Propellant supply system	Turbo pump	_	Turbo pump					
Impulse to weight ratio (s)	429*1	280*1	447*1					

Rocket Equation
Launch Vehicle Flight Sequence (HII-A F4)/0.8

Ted Magas regime Ligation

ADECS—II separation

Sells-A feature institute

Land Magas regime Cateful Security of Count (Hight

Sells-A feature constitution

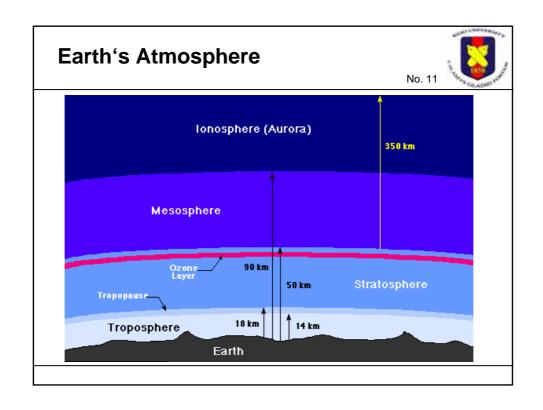
Earth Surface

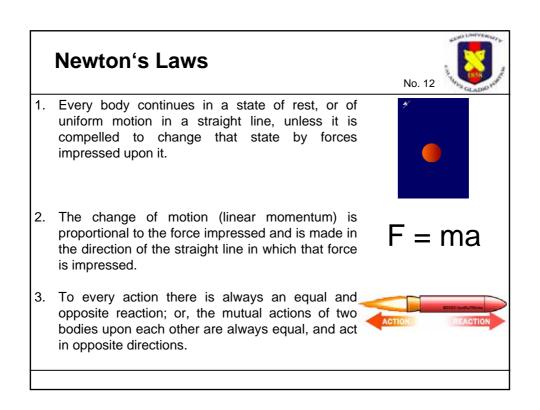
(JAXA)

No. 9

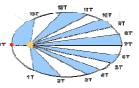
Event	Time passed after liftoff		Distance on earth	Altitude	Inertial velocity
	hour m	in. sec.	km	km	km/s
1 Liftoff		0	0	0	0.4
2 Solid Rocket Booster (SRB-A) burnout		1 40	20	50	1.3
3 SRB-A jettison		1 47	23	57	1.3
4 Payload fairing jettison		4 20	153	202	1.8
5 1st stage engine cutoff		6 35	404	390	3.6
6 1st/2std stages separation 7 2nd stage engine ignition 8 2nd stage engine cutoff		6 43	426	405	3.6
7 2nd stage engine ignition		6 49	443	416	3.5
8 2nd stage engine cutoff	1	5 38	2662	808	7.4
9 ADEOS-II separation	i	6 28	2995	808	7.4
10 FedSat separation		30 55	8764	824	7.4
11 WEOS separation	2	2 40	9462	826	7.4
12 μ - LabSat separation		34 30	10193	828	7.4

(JAXA)

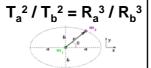

Rocket Equation


HII-A F4 Launch

No. 10


Kepler's Laws

No. 13

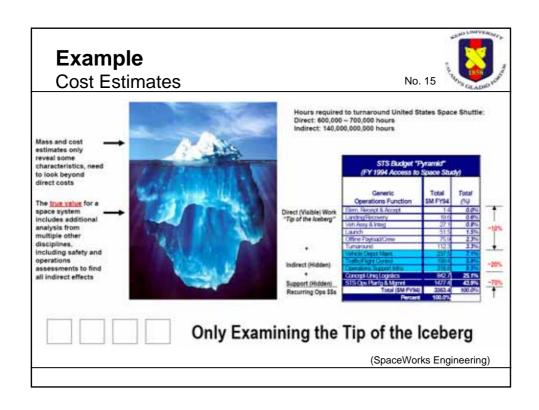

1. If two bodies interact gravitationally, each will describe an orbit that is a conic section about the common mass of the pair. If the bodies are permanently associated, their orbits will be ellipses. If they are not permanently associated with each other, their orbits will be hyperbolas (open curves).

2. If two bodies revolve around each other under the influence of a central force (whether or not in a closed elliptical orbit), a line joining them sweeps out equal areas in the orbital plane in equal intervals of time.

3. Stating that the ratio of the square of the revolutionary period (in years) to the cube of the orbital axis (in astronomical units) is the same for all planets

Example

Vision versus Reality


VISION: Simple Hangar Operations

REALITY: Severe Shortfall

(SpaceWorks Engineering)

